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An unexpected occurrence - a case study on an intergeneric hybrid in

giant snakes. - In recent years an increasing number of studies have identi-

fied cases of interspecific hybrids in reptiles, but intergeneric hybridisation,

especially in snakes, is still only rarely known. In the current study we used

several methods, SEMrecordings, morphometries, and both mitochondrial

and nuclear gene analyses, to identify and analyse an intergeneric hybrid as

a representative case study for the challenges related to this phenomenon.

Wehere present evidence of intergeneric hybridisation between species of

two well-studied boid genera: Eunectes {E. notaeus) and Boa {B. constric-

tor). For the intergeneric hybrid specimen the nuclear gene analyses result

in its intermediate and separate phylogenetic position whereas morpho-

logical analyses clearly show that only some characteristics are inter-

mediate, while other characters can be clearly assigned to either one of the

parental species. The indistinct morphological character states and the

conflicting phylogenetic position based on the genetic data show that such

a hybrid can be extremely difficult to identify in situ and ftirthermore, those

results can lead to false assumptions about the real identity and recognition

of hybrids, e.g. when modembarcoding methods are used for fast and easy

taxon-identifìcation. Therefore, better recognition, identification and long

term observations of both interspecific and intergeneric hybrids are needed

to properly assess and preserve the current biodiversity.

Un événement inattendu - étude d’un cas d’hybridation intergénérique

de serpents géants. - Récemment, un nombre croissant d’études ont permis

d’identifier des hybridations interspécifiques chez les reptiles, mais les cas

d’hybridation intergénériques demeurent rares, tout particulièrement chez
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les serpents. Dans notre étude, nous utilisons plusieurs méthodes modernes:

microscopie SEM, morphométrie et analyses génétiques des gènes mito-

chondriaux et nucléaires, afin d’identifier et d’analyser un hybride inter-

générique qui permettra de soulever les problématiques scientifiques liées à

ce type d’hybridation. Nous présentons ici des arguments en faveur d’un cas

d’hybridation intergénérique entre deux genres néotropicaux bien connus:

Eunectes (E. notaeus) et Boa {B. constrictor). Les résultats de l’analyse des

gènes nucléaires placent ce spécimen hybride intergénérique dans une

position intermédiaire entre ses parents mais distincte phylogénétiquement

alors que l’analyse morphologique montre clairement que seuls certains

caractères sont intermédiaires, alors que d’autres peuvent être clairement

assignés à l’une ou l’autre des deux espèces parentales. Les caractères

morphologiques non diagnostics d’un taxon connu et la position phylo-

génétique conflictuelle obtenue par les données génétiques montre que ce

type d’hybride intergénérique peut se révéler extrêmement difficile à iden-

tifier in situ. Une identification erronée est alors fortement probable plutôt

que la détection de la nature hybride du spécimen, surtout lorsque les

méthodes modernes de barcoding seront utilisées pour des identifications

faciles et rapides. De ce fait, une meilleure connaissance et un suivi à long

terme de tous les hybrides à la fois interspécifiques et intergénériques sera

nécessaire afin d’identifier correctement la biodiversité actuelle pour appré-

hender sa conservation avec plus d’efficacité.

Keywords: Barcoding - BDNF - Boa constrictor - Eunectes notaeus -

hybridisation - mtDNA- phylogeny - RAGl - SEM- spéciation.

INTRODUCTION

Interspecific hybrids are well known in amphibians and reptiles, but have until

recently been considered as uncommon (Mertens, 1950, 1956, 1964, 1968, 1972;

Murphy & Crabtree, 1988; Leaché & Cole, 2007; Mebert, 2008; Kearney et al, 2009).

Such interspecific hybridisation arises not only in captivity like in zoos, but also in situ

where under certain circumstances hybrid zones between two distinct species occur.

Especially in recent years quite a few reptile examples have been observed, e.g. in

turtles [Cuora mouhotii x C. galbinifrons (Shi et al, 2005), Mauremys reevesii x MsB

nensis (Fong & Chen, 2010)], in different lizard families [Anolis polylepis x A. osa

(Köhler et al., 2010), Aspidoscelis dixoni x A. tigris (Cole et ai., 2007), Podarcis sicu-

lus X P. wagierianus (Capula, 1993)], in colubrids [Pantherophis bairdi x E obsoletus

Undheimeri (Vandewege et al, 2012)], in vipers [Bitis gabonica x B. arietans

(Broadley & Parker, 1976; Broadley, 2006)], in boids [Eunectes murinus x E. notaeus

(Dirksen & Böhme, 1998)], and in pythonids [Python natalensis x P bivittatus (Branch

& Erasmus, 1984)].

While interspecific hybrids now seem not too uncommon, intergeneric hybrids,

as are known between snake genera like Liasis mackloti x Morelia spilota (Banks &
Schwaner, 1984) and Crotalus horridus x Sistrurus catenatus (Bailey, 1942) are appa-

rently still very rare occurrences. One of the most recently reported occurrences of

intergeneric hybridisation are two hybrid specimens of PituopMs catenifer sayi and

Pantherophis vulpinus (Ledere et al, 2012) which are of particular interest since these
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are true naturally occurring intergeneric hybrid snakes. In the pet trade intergeneric

snake hybrids are well known and some reptile breeders attempt to hybridise specific

snake genera, e.g. Pantherophis x Pituophis, Pantherophis x Lampropeltis, or Acran-

tophis X Boa (Ledere et al, 2012; Branson’s Wild World, 2014; Hybrid Herps, 2014).

Although several fora exist where breeders exchange their experiences, unfortunately

no substantial studies exist which summarise the number of successful hybridisations

in captivity and compare them to the number of known natural hybrids. Thus, one can

only state that interspecific and intergeneric snakes are far better known and much
more common in captivity than in nature.

Here we report on a new case of an intergeneric hybrid snake which was bom
in captivity and is kept in the 'Ménagerie du Jardin des Plantes’, at the Paris Natural

History Museum (MNHN). This living specimen is a boid hybrid between a female

Boa constrictor and a male Eunectes notaeus. With the idea to shorten the phrase

“intergeneric hybrid specimen” and to reflect the identity of this hybrid we name it

“Boaconda” - a joined name between the names Boa {Boa) and Anaconda {Eunectes).

Both boid genera Eunectes and Boa have been well studied (e.g. Dirksen &
Böhme, 1998; Dirksen, 2002; Bertona & Chiaraviglio, 2003; Burbrink, 2005; Aller et

al, 2006; Bonny, 2007; Reed & Rodda, 2009) and the phylogenetic position of both

genera among boid snakes has been clearly resolved in recent multigene (mitochon-

drial and nuclear genes) phylogenetic studies (e.g. Vences et al, 2001; Burbrink, 2005;

Noonan & Chippindale, 2006; Reynolds et al, 2014).

The genus Eunectes consists of five acknowledged species and the genus Boa

is currently believed to harbour a single species with nine subspecies. The main habitat

of Eunectes notaeus is alongside the Rio Paraguay and its tributaries, which are part of

the Pantanal. These rivers cross Bolivia, Brazil, Paraguay, Argentina and partly

Umguay (Stimson, 1969; Petzold, 1982; Henderson et al, 1995; Dirksen & Böhme,

1998; Dirksen, 2002) (Fig. 1, distribution range of Eunectes notaeus marked with

transverse lines). E. notaeus inhabits mainly swamps and seasonal flooded areas but it

can also be found in forested or deforested as well as agricultural areas (Striissmann &
Sazima, 1993; Dirksen & Henderson, 2002; Reed & Rodda, 2009).

Boa constrictor is distributed in Central America and north and central regions

of South America, from Mexico to Argentina and southern Brazil (Bonny, 2007; Reed

& Rodda, 2009) (Fig. 1, distribution range of Boa constrictor marked with vertical

lines). The species inhabits a wide range of biotopes where it is common in forests,

grasslands and agricultural areas (Bonny, 2007; Reed & Rodda, 2009).

Both species Eunectes notaeus and Boa constrictor are syntopic in the northern

part of the Pantanal (western Brazil) and along the upper river section of the Rio

Guaporé in Bolivia (Striissmann & Sazima, 1993; Junk et al, 2006; Souza et al, 2010).

They prefer dense vegetation near water (Chiaraviglio, 2006; Reed & Rodda, 2009).

The hybrid Boaconda was bom on 29th May, 2009 in the “Ménagerie” of the

MNHNin Paris. This snake is the only surviving individual of a clutch comprising two

individuals without the skeleton, one congenital malformation and about 20 unferti-

lised eggs. It was sexed twice with a testing probe and identified as a male on 14th

April, 2010 and 3rd December, 2011 respectively. Because of the young age of the

hybrid individual sexual activity could not yet be observed, therefore, the question
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Fig. 1

Distribution map: vertical lines - distribution of Boa constrictor spp.; transverse lines - distri-

bution of Eunectes notaeus; crossed markings - overlapping distribution range of both species

[modified from figures 12 and 8.2 of Reed & Rodda (2009)].

about fertility or sterility cannot be satisfyingly answered. The Boaconda (Figs

2 E-H), its mother (Figs 2 A-B) and both potential fathers (Figs 2 C-D) are still alive

and therefore electronically tagged and their respective tag numbers are:
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250228500004090, 250228700001763, 2502296000049768, and 00-01FO-7C39. The

female B. c. constrictor arrived at the Ménagerie on 28th September, 2005 and she was

previously never in contact with any male snake (1. Ineich, pers. comm.). Since the

arrival day the female B. c. constrictor is kept in the same terrarium as the two male

E. notaeus. Copulation was observed several times by snake keepers at the Ménagerie

in 2007 and 2008.

MATERIALANDMETHODS

Genetic analyses

To determine the respective position of the hybrid in phytogenies calculated on

the basis of different commonly used gene sequences (both mitochondrial and nuclear

genes), we used tissue samples (obtained through biopsies) from the hybrid as well as

its biological mother (B. c. constrictor) and both of the potential paternal individuals

{E. notaeus). DNAwas extracted from each tissue sample using peqGold Tissue DNA
Mini Kit (PEQLAB). A fragment of the mitochondrial 16S rRNA gene was amplified

with the primers 16sar~L (5’-CGCCTGTTTATCAAAAACAK3’) and 16sbr™H

(5’-CCGGTCTGAACTCAGATCACGD3’)(Palumbi et al, 2002). Furthermore, two

nuclear genes were amplified: a part of the RAGl gene using the primers

RAGlMartFLl (5’-AGCTGCAGYCARTAYCAYAARATGTA-3’) and RAGIAM^
PRl (5’-^AACTCAGCTGCATTKCCAATRTCA-^3’) of Chiari et al (2004) and a frag==

ment of the BNDFgene using the primers BDNF-=F (5’--GACCATCCTTTTCCTK-
ACTATGGTTATTTCATACTD3’)and BDNF-R (5’^CTATCTTCCCCTTTTAATG^
GTCAGTGTACAAAC--3’) of Noonan & Chippindale (2006). Weused the amplifia

cation protocols described in Chiari et al (2004), Schmitz et al (2005a), and Crottini

et al (2009) for 16S, RAGl and BDNF, respectively. The PCRproducts were purified

using the High Pure PCR Product Purification Kit (Roche Diagnostics GmbH) in

accordance with the manufacturer’s instructions. For quality assurance both directions

of the amplified PCRproduct were sequenced by an external vendor (Macrogen). New
sequences were generated for five Boa constrictor, one Calabaria reinhardtii, two

Eunectes notaeus and the hybrid (Boaconda). Accession numbers for the newly gene-

rated sequences are shown in the Appendix I.

Complementary sequence data for the completion of our datasets for the respec-

tive phylogenetic analyses were obtained from GenBank (see Appendix I).

The obtained sequences were initially automatically aligned using ClustalW

(Thompson et al, 1994) and manually checked using the original chromatograph data

in the program BioEdit (Hall, 1999).

We used neighbour-joining (NJ), maximum likelihood (ML) and Bayesian

interference methods to calculate the phylogenetic trees for the respective genes. NJ
analyses was performed using PAUP* 4.0b 10 (Swofford, 2002). For the ML tree we
used the PhyML 3.0 computer cluster of the Montpellier bioinformatics platform

(http://www.atgc-montpellier.fr/phyml/) (Guindon et al, 2010). Bootstrap analysis

(20000 [for NJ] and 2000 [for ML] pseudo-replicates) was used to estimate node

support. Bayesian reconstructions were performed with MrBayes, version 3.12

(Huelsenbeck & Ronquist, 2001). Estimation of the correct parameters for the both the
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Fig. 2

(A, B) Boa c. constrictor (250228700001763). (C, D) Eunectes notaeus (2502296000049768),

the specimen 0001F07C39 is similar in colouration as the other E. notaeus. (E-H) Boaconda
(250228500004090), with (H) shortly after birth.
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Bayesian and the ML analyses were done using jModelTest (Guindon & Gascuel,

2003; Posada, 2008). The exact parameters used for the Bayesian analyses followed

those described in detail by Reeder (2003) and Schmitz et al. (2005b). Node support

of bootstraps >70 %(Hillis & Bull, 1993) and Bayesian posterior probabilities >0.95

were considered to be highly significantly supported.

Scale microstructure

For the SEM(Scanning Electron Microscope) recordings, dried exuviae from

both parent species (3 potential species: 2 paternal Eunectes notaeus and 1 maternal

Boa c. constrictor and the hybrid were used. The microstructure of snake scales is

unique among different species and shows almost no variation between individuals of

one species and furthermore, it is independent of the individual age (N. Ernst unpubl.

data; Schmidt & Gorb, 2012). Therefore, only one of the Eunectes notaeus individuals

(00-01FO“7C39) will be described in detail. The samples from each body side (dorsal

and ventral) were attached to a standard pin stub mount with a double sided carbon

adhesive tape. The samples were powdered with a layer of 50 nm gold-palladium

composite using a HummerVII sputtering system (Anatech LTD, Alexandria, VA) with

a 120 mTorr vacuum.

The observations were done with a HITACHI S-2460N Natural Scanning

Electron Microscope (Hitachi, Tokyo, Japan) at an accelerating voltage of 25 kV and

pictures were electronically displayed with the Digital Image Scanning System 5

(Version 5.4.14.2, copyright 2004) and exported to the Digital Image Processing

System 2.6 (Version 2.6.14.1, copyright 1997-2005) by which the pictures were saved

as JPEG and TIFF files. Microstructures of the anterior, middle and posterior regions

of both dorsal and ventral scales were examined. Images of the hinge region (part of

skin between scales) were also taken. These were taken at a magnification of 2.000x

and 6.000x. The primary microstructure can be seen in the middle region of a scale.

Pholidosis and morphometrics

Weselected three body and two head scale counts, four body and seven head

measurements for the morphological analysis. Additionally, the gender and the eye-

colour (EYC) (only of the four living specimens) were recorded (Table 3). Ventral

(VEN) and subcaudal (SUC) scale numbers were counted according to standard tech-

niques, as were the dorsal scale rows at midbody (DOR) (Dowling, 1951). The

numbers of the supralabial (SUL) and of the infralabial scales (IFL) were counted.

Following head measurements were taken with an digital calliper (Brüder

Mannesmann Werkzeuge, Remscheid, Germany): the head length, which was

measured from the posterior end of the lower jaw bone to the snout end (HEL); the

head width, which was measured as the distance between the mandibular joints (HWI);

the distance between the eyes, measured dorsally (DSE); maximal eye diameter

(EYD); the distance between the nares, measured dorsally (DNA); maximum dorso-

ventral diameter (DIH); maximum lateral diameter (DIW). Additionally, the snout- vent

length (SVL) and the tail length (TAL) were taken with an inextensible strap and

measured with a folding meter stick. The total length (TOL) was calculated by adding

up the snout-vent length (SVL) and the tail length (TAL). For the analysis we calcu-
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lated some ratios (TAL/TOL; HEW/HEL; HEL/SVL; HEL/TOL; DSE/HEW;
DSE/HEL; EYD/HEL; DNA/HEW; DNA/HEL; DIW/DIH). Ail measurements were

taken on the right side of the snakes. Wemeasured the Boaconda, the mother {Boa c.

constrictor), the two potential fathers (Eunectes notaeus, 2502296000049768 and

00-01FO-7C39), and seven museum specimens of E. notaeus and eight museum spe-

cimens of B. c. constrictor from the Natural History Museumof Geneva, Switzerland

(MHNG) (see Appendix II). Additionally the weight (WEI) was recorded, the colo-

ration described and the eye colour (EYC) of the four living specimens were deter-

mined. The eye colour was described with the colour catalogue for field biologists by

Köhler (2012).The statistical analyses [Univariate Analysis, Principal Component

Analysis (PCA), with variances and covariances of groups, and between-group

calculations] were conducted using PASTversion 2.16 (Hammer et al, 2001).

RESULTS

Genetic analyses

Of the three computed phylogenetic gene trees (Figs 3 A-C), the mitochondrial

tree shows as expected a complete sequence identity of the Boaconda with its mater-

nal lineage {Boa c. constrictor) and thus both the confirmed mother and the hybrid

offspring are placed in the same well supported clade. In contrast to the mitochondrial

tree, the hybrid is placed in an approximately intermediate position between its paren-

tal species Eunectes notaeus (2502296000049768, 00-01FO-7C39) and Boa c. cons-

trictor in both computed trees for the nuclear genes, even though contrarily to MLthe

MrBayes package treats heterozygous (ambiguous) sites as missing data (Potts et al,

2014). The nuclear genes used do not allow us to determine which one of the male E.

notaeus individuals is the actual father, but since there were absolutely no differences

in both nuclear genes between the two E. notaeus specimens, we treat both specimens

equally.

The two parental genera are situated on highly significantly supported distinct

clades and are well separated from each other. Both the BDNF- and RAG1 -tree (Figs

3 B-C) show that the integration of hybrids does not significantly alter the node support

for the parental taxa. The intermediate position can be explained due to heterozygosity

at most or all of the 12 variable sites in the BDNFgene fragment and 19 variable sites

in the RAGl gene fragment. 11 of the variable sites (12) in the BNDFgene fragment

between B. c. constrictor mother and E. notaeus potential fathers are identified as fixed

synapomorphies (Table 1) and all 19 variable sites in the RAGl gene fragment are

synapomorphies in B. c. constrictor and E. notaeus (respectively 2502296000049768

and 00-01FO-7C39) (Table 2). The hybrid shows heterozygosity at 83 %of variable

sites in the BDNF-gene fragment and 100 % of variable sites in the RAGl -gene

fragment.

Scale microstructure

The microstructure of the dorsal scale (Fig. 4 A) of Boa c. constrictor shows

cells which are irregularly shaped and mostly longer than they are wide. The cell

borders are primarily smooth and form anterior a few elongated, broad peaks. The

pores of the cells are elongated, almost regularly aligned, touch the cell borders, and



INTERGENERICHYBRIDS ANDSPECIES IDENTIFICATION 301

AF512737 Loxocemus bicolor

0 . 80/100

0 . 78^4
85

1 . 00«£

EU419841 Sanzinia m. madagascariensis

——AY336061 Acrantophis dumeriU

AY336071 Acrantophis madagascariensis

—GQ200595 Lichanura trivirgata

AF512743 Eryx conicus

100
1 . 00/100

Boa constrictor MA5251 Female E204.3

BOACONDAhybrid E204.4

——- HQ267803 Eryx jayakari

97
1 . 00 / 9 ?

100
OTÜÖ

AF215273 Epicrates cenchria crassus

Eunectes notaeus MA0147 Male E204.2

Eunectes notaeus M98157 Male E204.1

AM236347 Eunectes notaeus

0.83/?/^ AF215274 Eunectes notaeus

Caiabaria reinhardtii PCR1220b

ürSBTSr

:üö7röü

. EF645050 Liasis olivaceus

EF545053 Leiopython albertisii

- EF545052 Liasis fuscus

- EF545051 Liasis mackioti

98
Tüö^

- EF545068 Candoia aspera

EU419850 Candoia cannata

0.1

Fig. 3A
Phylogenetic tree based on the mitochondrial gene fragment 16S with calculated node support

for MLanalysis above the branches (only node supports over 70%are listed), and Bayesian ana-

lysis (only node supports over 0.70 are listed) and calculated NJ node support under the branches

(only node supports over 60 %are listed).
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Fig. 3B

Phylogenetic tree based on the nuclear gene fragment BDNFwith calculated node support for

MLanalysis above the branches (only node supports over 70%are listed), and Bayesian analysis

(only node supports over 0.70 are listed) and calculated NJ node support under the branches

(only node supports over 60 %are listed).
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Phylogenetic tree based on the nuclear gene fragment RAGl with calculated node support for

MLanalysis above the branches (only node supports over 70%are listed), and Bayesian analysis

(only node supports over 0.70 are listed) and calculated NJ node support under the branches

(only node supports over 60 %are listed).
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the distance between the pores has the same width as that of the pores. The cells of the

ventral scales (Fig. 4 B) of B. c. constrictor are irregularly shaped and mostly longer

than they are wide with only few short, pointed anterior peaks which are irregularly

arranged. The lateral cell borders are mostly smooth. The hinge region shows hemi-

spheric rises with big round pores lying closely together.

The dorsal scales (Fig. 4 C) of Eunectes notaeus (00-01FO-7C39) have a micro-

structure of irregular shape, mostly broad and not longer than they are wide. The cell

borders are smooth and the anterior border is shaped in few rounded peaks. The pores

of the cells are elongated, asymmetrically aligned, do not touch the cell borders, and

the distances between the pores are wider than the width of the pores themselves. The

ventral scale (Fig. 4 D) microstructure shows short but very wide cells with serrated

anterior cell borders. The peaks of the cell borders are irregularly arranged, very short

and rounded. The cells have small, shallow and round pores which are irregularly

aligned. The hinge region consists of hemispheric rises with small and shallow pores

which are situated at greater distances from each other.

There are only comparatively slight differences in the microstracture of the

dorsal and ventral scales (so-called reticulated structure sensu Price, 1982) between

Boa c. constrictor and Eunectes notaeus (Figs 4 E-F). The microstructure of the hybrid

shares more similarities with B. c. constrictor than with E. notaeus. The only

noticeable similarity the Boaconda shares with E. notaeus (00-01FO-7C39) is that the

cells of the dorsal scales are broader than they are long (Fig. 4 E). It seems that the

microstructure of the hybrid is intermediate to both B. c. constrictor and E. notaeus, a

classic situation for hybrids, but with distinct tendencies towards B. c. constrictor;

which likely leads to the observed pattern in the hybrid since even as the patterns of

E. notaeus and B. c. constrictor are rather similar, the scale microstructure of B. c.

constrictor is clearly more pronounced. The microstructure of the Boaconda looks

regular and distinctly sculptured.

In detail one can see a close resemblance between the hybrid and B. c. cons-

trictor in the anterior and posterior regions of the dorsal scales (Fig. 4 E). Also the

hinge region of the hybrid with its large round pores and the cell borders, which span

over the elevations, looks more like the hinge region of B. c. constrictor. The hybrid

shows serrated cell borders. These serrations are blunt and elongated which appear to

be an intermediate form between E. notaeus (with almost smooth borders) and B. c.

constrictor (with narrow and elongated serrations).

A similar intermediate pattern can be found in the ventral scales of the

Boaconda (Fig. 4 F) comparing it to those of the parents, B. c. constrictor and E. no-

taeus. In general, the ventral scales show a similar but more elementary pattern than

the pattern of the dorsal scales. A remarkable similarity in the microstructure can be

found between B. c. constrictor and the hybrid with elongated ridges and punctate

pores in-between, whereas E. notaeus has bigger rounded pores (Fig. 4 F). The primary

microstructure of the Boaconda ’s cell borders shows an intermediate pattern to B. c.

constrictor and E. notaeus respectively. The cell borders of the hybrid are shaped in

long and broad serrations, while the borders of B. c. constrictor are almost smooth and

E. notaeus has cell borders which show short and narrow serrations.
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Fig. 4

SEMrecordings. (A) Dorsal scale of Boa c. constrictor (250228700001763). (B) Ventral scale

of Boa c. constrictor (250228700001763). (C) Dorsal scale of Eunectes notaeus (0001F07C39).

(D) Ventral scale of Eunectes notaeus (0001F07C39). (E) Dorsal scale of Boaconda
(250228500004090). (F) Ventral scale of Boaconda (250228500004090).

Pholidosis and morphometrics

The pholidosis and morphometrics show an interesting pattern. The numbers of

ventral scales (VEN), the ratio of tail length to the total length (TAL/TOL), the ratio of

the distance between the eyes towards the head length (DSE/HEL), and the ratio of the
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Table 3: Pholidosis and ratios of morphometries.

Mean
value

Minimum
value

Maximum
value

Mean
value

Minimum
value

Maximum
value

Eunectes notaeus Boaconda Boa c. constrictor

DOR 48 45 51 57 87.22 82 95

YEN 232.67 228 242 244 246.67 236 266

SUL 13.78 13 16 18 21.11 19 24

IFL 17.33 17 18 20 24.33 22 28

TAL/TOL 15.74 11.79 19.05 12.00 11.99 10.23 13.13

HEL/TOL 3.68 3.21 4.01 3.57 4.41 3.67 5.85

DSE/HEL 26.65 24.93 29.15 35.46 35.39 33.73 39.38

DNA/HEL 12.41 11.03 16.64 16.56 14.76 13.29 17.02

EYD/HEL 8.86 7.85 10.51 9.44 7.64 6.98 8.55

distance between the nares towards the head length (DNA/HEL) of Boaconda are in

the range of the values of Boa c. constrictor (Table 3, Figs 5 A-B). In contrast to this,

the ratio of the head length towards the total length (HEL/TOL), and the ratio of the

eye diameter towards the head length (EYD/HEL) lie in the ranges of the values of

Eunectes notaeus (Table 3, Figs 5 C-D). The numbers of the supralabial (SUL) and of

the infralabial (IFL) scales are intermediary between B. c. constrictor and E. notaeus

(Table 3, Fig. 5 F) as well as the count of the dorsal scale rows (DOR) (Table 3,

Fig. 5 E).

Colouration

The colouration of the Boaconda (Figs. 2 E-H) shows also intermediate

characteristics and only few distinct characters are shared with one of the parental

species. The ground-colouration is a light yellow similar to the potential fathers.

Dorsally are two brown blotches many of them are fosed to stripes. The female Boa c.

constrictor (Figs. 2 A-B) shows a light brown ground colour and the typical large, dark

brown saddles. Both potential fathers [E. notaeus, 2502296000049768 (Figs. 2 C-D),

00-01FO-7C39] are yellow-green coloured with small, black spots and the typical

small, saddles. The Boaconda has black large roundish blotches on the flanks (Figs

2 F, 2 H), while the mother (Fig. 2 B) has rhombic blotches with greater distances to

each other and the potential fathers (Fig. 2 D) have small blotches. The ventral side of

the mother is cream-coloured with brownish blotches in greater distance to each other

and the potential fathers have small black spots on a yellow ventral side, while in

contrast the Boaconda has two rows of adjacent black blotches. The head of the

Boaconda (Figs 2 E, 2 G) shows a median stripe from the top of the snout and two

stripes right and left of the median stripe, which begin at eye level. Additionally, the

snake has a large black blotch before and a large black stripe after the eye. The mother

shows the typical small light brown central stripe and laterally a thinner stripe behind

the eye (Fig. 2 A). The potential fathers have three stripes, which are only slighter

darker than the yellow-green ground colour. Laterally E. notaeus (Fig. 2 C) has a small

blotch in front of the eye and a thinner stripe behind the eye.
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DOR SUL

Fig. 5

Principal Component Analyses of the discussed characters (ellipses indicate estimation where

95%of the individuals of the population are expected to fall; DNA/HEL- ratio between distance

of nares and head length, DOR- dorsal scale rows at midbody, DSE/HEL - ratio between

distance of eyes and head length, EYD/HEL - ratio between eye diameter and head length,

HEL/TOL - ratio between head length and total length, IFL - numbers of infralabial scales, SUL
- numbers of supralabial scales, TAL/TOL - ratio between tail length and total length).
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DISCUSSION

Hybrid individuals do not always show morphologically intermediate charac-

teristics between the distinct characters known from their parent species (Ross &
Cavender, 1981; Mebert, 2008, 2010; Toda & Hikida, 2011) but at the same time not

all morphological intermediates are hybrids (Wilson, 1992; Dowling & Secor, 1997).

Sometimes hybrid offspring have absolutely no detectable morphological unique

characteristics but only show those characteristics which are already present in one of

the parent species as recently shown in the study of Mebert (2010) about hybrid zones

between the colubrid snakes Nerodia fasciata and N. sipedon and in the study of Toda

& Hikida (2011) about the hybrids of the geckos Gekko yakuensis and G. hokouensis.

The SEM and morphological analyses also show that some intermediate

characteristics are present but others show clear tendencies to the traits present in one

of the parent species. The SEManalyses show that although there are scale micro-

structures of the hybrid which are intermediate between Boa c. constrictor and

Eunectes notaeus (00-01FO-7C39), there is a pronounced tendency towards the typical

stmctures observed in B. c. constrictor. Assuming one does not know in advance that

the scales analysed are those of a hybrid specimen, at first glance, the scale micro-

structure could lead to the false assumption that these are the scales of a Boa c. cons-

trictor. Some characters are indicative of the hybrid status, e.g. one remarkable inter-

mediate scale microstructure is the shape of the cell borders of the dorsal and ventral

scales of the hybrid. As these specific stmctures are not routinely analysed, such

deviations in character states can be easily overlooked. Only few morphological

characters of Boaconda show clear intermediate states towards the parental species

(Figs. 5 E-F), but some other characters (ventral scales, DNA/HEL, DSE/HEL) fall

directly in the range of the maternal species B. c. constrictor (Figs. 5 A-B) and some

other characters (EYD/HEL, HEL/TOL) fall in the range of the paternal species E. no-

taeus (Figs. 5 C-D). Therefore, not only the analyses of mitochondrial gene fragments

of questionable hybrid specimens can lead to false assumptions, namely that the hybrid

is not identified as a hybrid but is assigned to the maternal species (see discussion

below), but also in-depth morphological data can lead to the assumption that such a

hybrid snake specimen is wrongly identified as a member of one of the parental

species.

In this case the hybrid was bom in captivity. But considering the recently

published paper about the Pituophis catenifer sayi x Pantherophis vulpinus hybrids

which are indeed naturally occurring hybrids (Ledere et al., 2012), it can be assumed

that also naturally occurring hybridisation between Eunectes notaeus and Boa cons-

trictor may be possible for several reasons, among them the fact that the geographic

distribution areas of both species overlap in larger parts (see Fig. 1). Both species are

sympatric in the northern part of the Pantanal (western Brazil) and along the upper

river section of the Rio Guaporé in Bolivia. Additionally, E. notaeus and B. constric-

tor show very similar aspects regarding their reproductive biology, as well as in sexual

dimorphism and mating habits. Adult females of both E. notaeus and B. constrictor are

distinctly larger than the corresponding adult males. During the mating season both

species form mating aggregations (Dirksen, 2002; Bertona & Chiaraviglio, 2003;

Rivas & Burghardt, 2005). The mating season of E. notaeus is between September and
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December (Dirksen, 2002) and the mating season of B. constrictor is during the dry-

season starting approximately in June and lasting until September (Bertona &
Chiaravigiio, 2003; Pizzatto & Marques, 2007). Based on the similar mating habits, the

overlapping mating season and the sympatric occurrence in the same habitat of both

species it is quite likely that the mechanism which should prevent hybridisation can

easily break down e.g. due to habitat disturbance - be it caused by climate change or

human impact (Bullini, 1985; Barton & Bengtsson, 1986; Birky, 2013).

The potential high competitiveness (through heterosis) of most hybrid species

can be explained by the increased enhancement of heterozygosity in a single gene-

ration where interspecific hybridisation occurs (Bullini, 1985). Grant & Grant (1994)

discovered that hybrids and backcrosses of the Ground Finches Geospiza fortis, G.

scandens and G. /uliginosa on the island Daphne Major in the Galapagos Archipelago

exhibit higher fitness levels than their parental species. Furthermore, hybridisation and

iritrogression can probably more rapidly increase genetic diversity through production

of new recombinant genotypes than it is possible by mutation (Dowling & Secor, 1997)

and such enhanced variability could allow organisms to expand their range in un-

favourable habitats and to adapt more readily to environmental changes (Stebbins,

1959; Dowling & Secor, 1997; Martinez-Freiria et al., 2010). Such an increase of the

genetic diversity and adaptation to a changing environment can benefit spéciation.

Another possibility to establish a stable hybrid zone or population is by partheno-

genesis (Murphy et al, 2000; Schmitz et al, 2001; Strasburg et al, 2007; Bengtsson,

2009). But not only parthenogenetic stable communities can establish evolutionary iso-

lated lineages. Recent genetic studies reveal evidence that the red wolf {Cams rufus)

has originated from the coyote {Cams latrans) by historical hybridisation with the grey

wolf {Canis lupus) (Wayne & Jenks, 1991; Roy et a!., 1994; von Holdt et a!., 2011).

All these factors discussed above may lead to a generally increased hybri-

disation rate in the long run, and thus to complications in efficiency of modem fast

screening techniques like DNAbarcoding. The main intent of the DNAbarcoding is to

rapidly identify unknown taxa and to facilitate the discovery of new species using

large-scale screening (Hebert et al., 2003; Stoeckle, 2003; Eaton et al, 2010; Nagy et

al, 2012). For this approach mostly mitochondrial gene fragments have been used.

Although intergeneric hybridisation is still mostly regarded as uncommon and thus

should theoretically have only little impact on DNAbarcoding (Hebert & Gregory,

2005) the increasing identification of hybrid specimens (Bullini, 1985) shows that the

problems these specimens cause in barcoding screenings should not be underestimated

(Eaton et al, 2010). In our case study the true hybrid status of the Boaconda was not

correctly identified in any of the three phytogenies despite using different and

commonly used genetic markers. While we accept the concept of DNAbarcoding as a

useful fijst screening technique, we want to draw attention to the fact that there are

aspects which can easily be overseen or can lead to false assumptions even when

dealing with seemingly well-known taxa. When using mitochondrial gene fragments

for barcoding as currently established, you will always fail to detect a hybrid since a

hybrid specimen will always be identified as an individual belonging to its maternal

species (see Fig. 3 - 16S tree). But even following the current trend to use additional

gene fragments, e.g. using nuclear genes to resolve the deeper nodes in a phylogeny, a
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hybrid will be mostly positioned in an isolated clade which will be intermediate some-

where between the (also well supported) clades containing both parental species; thus,

it could easily be considered as a new undescribed taxon. Since even phylogenetic

programs like the widely used MrBayes, which handle heterozygous data as missing

data (Potts et al, 2014), may recover intermediate positions for hybrids in phylogenetic

trees, only a direct analysis of heterozygous sites, and a specific integration into mole-

cular datasets, e.g. using the 2ISP-infomiative approach (Potts et al, 2014) or by

phasing the nuclear gene haplotypes and analysing the alleles separately (Weisrock

et al, 2012), can clarify whether the specimen in question is of hybrid origin or not and

properly determine its phylogenetic position..

Dubois (1981a, 1981b, 1983, 1988a, 1988b, 2004) and Dubois & Bour (2010)

raised an interesting aspect concerning intergeneric hybrids. They propose that two

species, which are able to produce (either under natural or artificial conditions) viable

adult hybrids, should not be included in different genera. The genus as a systematic

unit should be seen as a species or a group of species of presumably commonphylo-

genetic origin which is separated by a decided gap from other similar groups (Mayr,

1942; Lernen & Freeman, 1984; Dubois, 1988). While it is clear that the allocation of

taxa to genera is an artificial and subjective method to categorise these taxa, the

existing data leave no doubt about the validity of both the genera Boa and Eunectes.

The morphological, genetic, and ecological data known for these two genera and their

closest relatives [Epicrates s.L (Caribbean Islands), Epicrates s.L (South America), and

Corallus (Carribeaii Islands, Central and South America)] show clear separations and

differentiations between each of them (Toison, 1987; Kluge, 1989; Burbrink, 2005;

Noonan & CMppindale, 2006; Lee et al, 2007; Rivera et al, 2011; Reynolds et al,

2014; this study). Furthermore, following the '‘strategy of temporal banding” (Avise,

2008), the known age of the different genera also implicates that the recognition in

different groups is justified. The combination of the above mentioned data leads to our

working definition of the term genus: clear differentiations between several groups

together with similarities between species within those groups in morphology, gene-

tics, ecology and evolutionary time estimations indicate the uniqueness of the specific

species groups. If we would adopt Dubois’ proposal (1981a,b, 1983, 1988a,b, 2004) we
would rate down the weight of all morphological, genetic, and ecological data, all of

which implicate the differentiation between the four species groups in favour of a

single criterion. To fuse all these distinct genera in one single genus would mean to lose

quite a lot of information about their evolutionary diversity.

In this work we have shown that the potential problems associated with hybrid

specimens should not be underestimated. Weemphasise that hybrids both captive bred

and naturally occurring ones are inherently a rich source of information, and while for

a long time hybrids were considered as less fit or as a weakening factor for the asso-

ciated species population, several new studies have shown that hybridisation is not

always a negative factor but that hybridisation can even be a catalyst for spéciation

(Stebbins, 1959; Remington, 1968; Bullini, 1985; Wayne & Jenks, 1991; Roy et al,

1994; Dowling & Secor, 1997; Seehausen, 2004; Mebert, 2008, 2010; Martinez-Freiria

et al, 2010). Ignoring potential hybrids can be problematic, since fast morphological

and genetic screening techniques of high biodiversity areas are progressively gaining
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favour. With the increasing rate of such studies, the results of those studies influence

political decisions on the future of the studied regions (conservational status, clearings,

etc.). Whenspecific biological information like the occurrence of hybrid zones and the

taxonomic status of the parental species are not properly identified, then those missing

data can lead to decisions which may even be unfavourable for the parentals them-

selves. A typical case of such mistakes can be observed after the introduction of Iguana

iguana in the West Indies where it clearly hybridises with the endemic Iguana delica-

tissima leading to the extinction of the latter on some islands (Breuil, 2002), but these

hybrids have only been recently recognised. A similar situation can be found on the

island Utila where the endemic iguanid lizard Ctenosaura bakeri is threatened by the

hybridisation with the widespread Ctenosaura similis (Pasachnik et al, 2009).
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APPENDIX I

The used GenBank accession numbers are as follows: for 16S: AF2 15273, AF2 15274,

AF512737, AF512743, AM236347, AY336061, AY336071, EF545050, EF545051, EF545052,
EF545053, EF545068, EU419841, EU419850, GQ200595, HQ267803; for BDNF: AY988027,
AY988028, AY988029, AY988030, AY988031, AY988032, AY988033, AY988040, AY988041,
AY988042, DQ465555, DQ465566, DQ465570, DQ465576, DQ465579, EU402629,
EU402631, EU402638, EU402639, EU402649, FJ433967, FJ433969, FJ433970, FJ433971,

FJ433972, FJ433973, FJ433974, FJ433975, FJ433976, FJ433977, FJ433978, FJ433979; for

RAGl: AY444061, DQ465556, DQ465564, DQ465567, DQ465577, DQ465571, DQ465580.
GenBank accession numbers for the newly generated sequences are as follows:

Boaconda (250228500004090; 16S: KF576911, BDNF: KF576915; RAGl: KF576748); Boa c.

(250228700001763; 16S: KF576910, BDNF: KF576914; RAGl: KF5 76751); Boa c.

constrictor (NE4.5; BDNF: KF576787); Boa c. imperator (E175.1; BDNF: KF576816; RAGl:
KF576905); Boa c. imperator (NEI. 17; BDNF: KF576812; RAGl: KF576901); Boa c. ortonii

(NE1.18; BDNF: KF576811; RAGl: KF576900); Calabaria reinhardtii (NE2.2; 16S:

KF576930); Eunectes notaeus (0001F07C39; 16S: KF576912, BDNF: KF576916; RAGl:
KF576749); Eunectes notaeus (2502296000049768; 16S: KF576913, BDNF: KF576917;
RAGl: KF576750).

APPENDIX II

Morphological data were obtained from following specimens of the collection of the

Natural History Museum of Geneva (MHNG). Eunectes notaeus specimens: MHNG1348.17;

MHNG1501.06; MHNG1501.67; MHNG1551.82; MHNG2194.3; MHNG2424.33; MHNG
2424.34; màBoa c. constrictor specimens: MHNG12.34; MHNG1325.33; MHNG1337.37;

MHNG1456.83; MHNG2238.13; MHNG2424.44; MHNG2424.45; MHNG2424.46.


